MBI Videos

Chris Heggerud

  • video photo
    Chris Heggerud
    Cyanobacterial (CB) blooms are becoming a global concern due to the increasing prevalence of eutrophication. The dependence of CB dynamics on phosphorus and light inputs is modeled via a stoichiometric approach. The dynamics occur in distinct phases that allow us to make use of multiple timescale analysis to uncover the driving mechanisms of each phase. As a result we are able to approximate the length of time a bloom persists. We then couple the CB model to a socio-economic model governing the anthropogenic nutrient inputs. We assume that the human population is made up of cooperators and defectors and that each strategy has an associated cost dependent on social pressure and norms, concern for CB, and effort. We find that the human population at a single lake exhibits bistability. Further, in considering a network of lakes the level of cooperation is highly dependent on social norms.

View Videos By